Skip to content

Assignment based metrics

ie_eval.metrics.assignment_based

Compute the reading-order-independent ECER/EWER/Nerval metrics from a label/prediction dataset.

Attributes

logger module-attribute

logger = getLogger(__name__)

Classes

Functions

compute_oiecerewer

compute_oiecerewer(
    label_dir: Path,
    prediction_dir: Path,
    by_category: bool = False,
    print_table: bool = True,
) -> PrettyTable

Compute reading-order-independent ECER and EWER metrics.

Parameters:

Name Type Description Default
label_dir Path

Path to the directory containing BIO label files.

required
prediction_dir Path

Path to the directory containing BIO prediction files.

required
by_category bool

Whether to compute the metric globally or for each category. Defaults to False. (Not implemented yet)

False
print_table bool

Whether to print the table. Defaults to True.

True

Returns:

Name Type Description
PrettyTable PrettyTable

The evaluation table formatted in Markdown.

Source code in ie_eval/metrics/assignment_based.py
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
def compute_oiecerewer(
    label_dir: Path,
    prediction_dir: Path,
    by_category: bool = False,
    print_table: bool = True,
) -> PrettyTable:
    """Compute reading-order-independent ECER and EWER metrics.

    Args:
        label_dir (Path): Path to the directory containing BIO label files.
        prediction_dir (Path): Path to the directory containing BIO prediction files.
        by_category (bool, optional): Whether to compute the metric globally or for each category. Defaults to False. (Not implemented yet)
        print_table (bool, optional): Whether to print the table. Defaults to True.

    Returns:
        PrettyTable: The evaluation table formatted in Markdown.
    """
    dataset = load_dataset(label_dir, prediction_dir)
    # Initialize scores
    ecer_total_score_err = MicroAverageErrorRate()
    ewer_total_score_err = MicroAverageErrorRate()

    # Iterate over the dataset
    for label, prediction in dataset:
        ecer_score = OiEcerEwer(
            labels=label.entities,
            predictions=prediction.entities,
            compute_ecer=True,
        )

        ewer_score = OiEcerEwer(
            labels=label.entities,
            predictions=prediction.entities,
            compute_ecer=False,
        )

        # Micro average
        ecer_total_score_err.update(GLOBAL_STAT_NAME, ecer_score)
        ewer_total_score_err.update(GLOBAL_STAT_NAME, ewer_score)

        # TODO: https://gitlab.teklia.com/ner/metrics/ie-eval/-/issues/12
        if by_category:
            continue

    # Format and display results
    table = make_oi_ecer_ewer_prettytable(
        ecer_total_score_err,
        ewer_total_score_err,
    )
    if print_table:
        print(table)  # noqa: T201
    return table

compute_oinerval

compute_oinerval(
    label_dir: Path,
    prediction_dir: Path,
    nerval_threshold: float = 0.0,
    by_category: bool = False,
    print_table: bool = True,
) -> PrettyTable

Compute reading-order-independent Nerval Precision, Recall and F1 scores.

Parameters:

Name Type Description Default
label_dir Path

Path to the directory containing BIO label files.

required
prediction_dir Path

Path to the directory containing BIO prediction files.

required
nerval_threshold float, default = 0.0

Threshold for the amount of character error that is tolerable during the computation (values in the range [0.0, 100.0]])

0.0
by_category bool

Whether to compute the metric globally or for each category. Defaults to False. (Not implemented yet)

False
print_table bool

Whether to print the table. Defaults to True.

True

Returns:

Name Type Description
PrettyTable PrettyTable

The evaluation table formatted in Markdown.

Source code in ie_eval/metrics/assignment_based.py
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
def compute_oinerval(
    label_dir: Path,
    prediction_dir: Path,
    nerval_threshold: float = 0.0,
    by_category: bool = False,
    print_table: bool = True,
) -> PrettyTable:
    """Compute reading-order-independent Nerval Precision, Recall and F1 scores.

    Args:
        label_dir (Path): Path to the directory containing BIO label files.
        prediction_dir (Path): Path to the directory containing BIO prediction files.
        nerval_threshold (float, default = 0.0): Threshold for the amount of character error that is tolerable during the computation (values in the range [0.0, 100.0]])
        by_category (bool, optional): Whether to compute the metric globally or for each category. Defaults to False. (Not implemented yet)
        print_table (bool, optional): Whether to print the table. Defaults to True.

    Returns:
        PrettyTable: The evaluation table formatted in Markdown.
    """
    dataset = load_dataset(label_dir, prediction_dir)
    # Initialize scores
    total_score_f1 = MicroAverageFScore()

    # Iterate over the dataset
    for label, prediction in dataset:
        score = OiNerval(
            labels=label.entities,
            predictions=prediction.entities,
            nerval_threshold=nerval_threshold,
        )

        # Micro average
        total_score_f1.update(GLOBAL_STAT_NAME, score)

        # TODO: https://gitlab.teklia.com/ner/metrics/ie-eval/-/issues/12
        if not by_category:
            continue

    # Format and display results
    table = make_oi_nerval_prettytable(
        total_score_f1,
    )
    if print_table:
        print(table)  # noqa: T201
    return table